CLG clustering for dropout prediction using log-data clustering method

نویسندگان

چکیده

<span lang="EN-US">Implementation of data mining, machine learning, and statistical from educational department commonly known as mining. Most school systems require a teacher to teach number students at one time. Exam are regularly being use method measure student’s achievement, which is difficult understand because examination cannot be done easily. The other hand, programming classes makes source code editing UNIX commands able easily detect store automatically log-data. Hence, rather that estimating the performance those student based on this log-data, study more focused detecting them who experienced difficulty or unable take classes. We propose CLG clustering methods can predict risk dropped out using cluster for outlier detection.</span>

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy-based Consensus for Distributed Data Clustering

The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...

متن کامل

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

a hybrid geospatial data clustering method for hotspot analysis

traditional leveraging statistical methods for analyzing today’s large volumes of spatial data have high computational burdens. to eliminate the deficiency, relatively modern data mining techniques have been recently applied in different spatial analysis tasks with the purpose of autonomous knowledge extraction from high-volume spatial data. fortunately, geospatial data is considered a proper s...

متن کامل

Solving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization

In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...

متن کامل

An improved opposition-based Crow Search Algorithm for Data Clustering

Data clustering is an ideal way of working with a huge amount of data and looking for a structure in the dataset. In other words, clustering is the classification of the same data; the similarity among the data in a cluster is maximum and the similarity among the data in the different clusters is minimal. The innovation of this paper is a clustering method based on the Crow Search Algorithm (CS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IAES International Journal of Artificial Intelligence

سال: 2021

ISSN: ['2089-4872', '2252-8938']

DOI: https://doi.org/10.11591/ijai.v10.i3.pp764-770